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Abstract

The tabletop plasma trap experiment named “S-POD” is employed to ex-
plore the stability of intense charged-particle beams focused by a series of
quadrupole doublet cells. The core of S-POD is a compact linear Paul-trap,
where we generate a non-neutral ion plasma that can approximately reproduce
the collective motion of an intense beam focused by periodic linear forces. Un-
like conventional beam-dynamics experiments relying on large-scale transport
channels and accelerators, it is straightforward in S-POD to control the func-
tional form of beam focusing over a wide range of variation. We systematically
measure the loss rate of trapped particles as a function of bare betatron tune and
locate resonance bands in which the plasma becomes unstable. It is confirmed
that a few bands of coherent resonances appear depending on the beam inten-
sity. When there is an imbalance between the horizontal and vertical focusing,
those instability bands split. Experimental results indicate that the instabil-
ity band is insensitive to the phase of quadrupole focusing element placement
within the doublet configuration. Experimental observations are compared with
transverse slice particle-in-cell simulations carried out using the Warp code.

PACS numbers: 29.20.-c, 41.75.-i

1. Introduction

Almost all modern particle accelerator systems exploit the principle of strong
focusing [1]. In strong focusing, both focusing and defocusing forces are em-
ployed in a manner where one can spatially confine a large number of charged
particles more effectively than the case where only focusing forces are used
[2, 3, 4]. The most standard strong focusing channel is the so-called “dou-
blet lattice” in which the beam receives one linear focusing and one defocusing
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quadrupole kick alternately within the lattice period [5]. A special case of the
doublet with equal length focusing and defocusing quadrupoles axially spaced
equidistantly within the lattice period is called a “FODO” lattice. FODO lat-
tices make most efficient use of the quadrupole focusing strength, but have less
free axial drift length within the period for other uses (pumping, diagnostics,
etc). Quadrupole doublets are often adopted for beam transport channels and
linear accelerators including a possible heavy ion fusion driver [6] and drift tube
linacs [7]. A non-scaling fixed field alternating gradient ring also consists of
many doublet cells [8]. This widespread use makes it important to understand
the collective instabilities of high-quality hadron beams traveling in long doublet
channels. While there are a number of numerical and analytic works on this
subject in past literature [1, 9], little work has been carried out experimentally
because of the practical reason of it being difficult to modify the focusing lattice
in usual accelerator transport channels. In S-POD, this practical difficulty for
accelerator systems in modifying the lattice is inconsequential since different
lattice focusing elements can be synthesized electronically, thereby allowing us
to systematically explore a wide variety of changes in lattice focusing functions.

In this paper, we investigate the space-charge effects in doublet focusing by
employing a compact linear Paul trap system developed at Hiroshima Univer-
sity. Because the transverse collective motion of a non-neutral plasma in the
trap is physically almost equivalent (beam-frame correspondence) to that of a
charged-particle beam in strong focusing channels, we can use the trap to study
transverse effects in beam transport [10]. The dedicated plasma trap system
for beam physics applications is called “S-POD (Simulator for Particle Orbit
Dynamics)” [11, 12]. After outlining S-POD experiments in Sec. 2, we show in
Sec. 3 numerical simulation data in which the actual Paul trap configuration has
been assumed. Experimental results from S-POD are then described in Sec. 4
and compared with the numerical simulations. To systematically explore the
stability of ion beams focused by a series of doublets, we change the waveform of
the plasma confinement field over a wide range. Concluding remarks are made
in Sec. 5.

2. S-POD simulations of doublet focusing

Consider charged particles of mass m and charge state q confined in a linear
Paul trap. The transverse collective motion of these particles is governed by the
Hamiltonian

H =
p2x + p2y

2
+

1

2
K(τ)(x2 − y2) +

q

mc2
ϕ(x, y, τ) (1)

where ϕ is the scalar potential of Coulomb interactions among the particles,
the independent variable is τ = ct with c being the speed of light, and K(τ) is
the periodic focusing potential proportional to the radio-frequency (rf) voltages
applied to the quadrupole electrodes. Equation (1) is identical in form to the
Hamiltonian for the transverse betatron motion of an intense beam in a beam
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transport channel, which means that we can make use of a non-neutral plasma in
the trap for the study of beam dynamics in alternating-gradient (AG) transport
channels. Detailed design considerations of a compact Paul trap for S-POD
can be found in previous publications [13, 14]. A similar trap system for beam
physics applications is also operating at Princeton Plasma Physics Laboratory
where Gilson and co-workers have produced many interesting results [15, 16, 17].

Ideally, a step-function rf waveform as in Fig. 1(a) is desired to emulate
piecewise-constant quadrupole doublet focusing in a Paul trap. Such piecewise
constant models forK(τ) rather than a specific axial fringe function for a magnet
focusing technology are often employed in an “equivalent” sense to represent
an idealization in analysis of beam transport [18]. As displayed in Fig. 1(b),
it is possible for the rf system of S-POD to approximately generate such rf
power consistent with piecewise constant K(τ). We, however, experimentally
observe that the maximum number of trappable ions tends to be lower with
the step-function voltage, compared to confinement with a sinusoidally varying
K(τ). The reason is presently unknown, but we suspect that low-frequency noise
included in the applied periodic voltage may be responsible for the observed
reduction in plasma density. In addition, the rise (and fall) time of a pulse
voltage is limited to 10 ∼ 20 nsec in our power supply system while the ideal
pulse width for 50% filling is only 250 nsec at the operating frequency of 1 MHz.
The ratio of the rise (fall) time to the pulse width becomes worse as we reduce the
filling factor. Considering these technical issues, we here take a sinusoidal model;
namely, we extract up to four fundamental Fourier harmonics from the ideal
doublet waveform and apply them to the quadrupole electrodes. This model
simplification is expected to have no essential effect on the basic mechanism
of coherent resonances because the instability occurs when the frequency of a
certain collective mode equals one of the driving harmonic frequencies. It should
not matter whether the driving force includes many other harmonics. The use
of simple sinusoidal rf waves makes it much easier for us to design the necessary
power-supply and control systems for systematic experiments.

For later convenience, we introduce several geometric parameters as illus-
trated in Fig. 1. We denote ℓF and ℓD as the widths of focusing and defocusing
pulses in the horizontal x-direction. The heights of the two square pulses are set
equal. The distance between the focusing to the defocusing pulses, i.e., the gap
width, is denoted as g, and the length of single focusing period as L. The so-
called filling factor (or quadrupole occupancy factor) is given by ξ = (ℓF+ℓD)/L.
Another parameter of interest to us is defined by ζ = g/(L−g−ℓF−ℓD) that we
refer to as the drift ratio. ζ measures asymmetry of the gaps in the quadrupole
doublet (ζ = 1 corresponds to a symmetric FODO). Expanding the doublet
waveform as in Fig. 1 into Fourier series, we obtain

K(τ) =
∞∑

n=1

An sin(2πnτ/L+ αn) (2)

where An and αn are the amplitude and phase of nth Fourier harmonic. In
the present experiments, we pick a few of low harmonic Fourier components
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and apply them simultaneously to the quadrupole electrodes to see if any new
stop bands appear depending on which harmonics are chosen. We have so far
considered the case where the plasma is focused primarily by the first (n = 1)
harmonic that has the frequency of 1 MHz. The rf amplitude required for the
full survey of the tune space is then less than about 93 volts for Ar+ ions. Other
harmonics of higher frequencies are treated as perturbation due to a technical
reason that limits the maximum amplitudes of these additional harmonic com-
ponents [19]. The amplitude of each perturbation harmonic is typically set at a
few percent of the primary focusing-wave amplitude.

3. Numerical predictions from Warp simulations

Before proceeding to experimental simulations with S-POD, it is informa-
tive to examine numerically whether we find any essential difference between
the ideal doublet focusing with a piecewise constant focusing function and the
present simplifying model with only a few harmonics. As mentioned above,
the amplitudes of higher-frequency harmonics are limited in the actual experi-
ment and thus lower than the ideal values necessary to accurately represent the
desired piecewise constant focusing force. This fact makes it more important
to carry out systematic numerical simulations for comparison. The particle-in-
cell (PIC) code “Warp” has been employed for this purpose [20, 21]. Since we
are particularly interested in transverse betatron resonances, an axially uniform
plasma is effectively assumed in transverse slice Warp simulations to ignore the
longitudinal dynamics.

The Warp simulations were carried out in a transverse xy-slice mode where
effective longitudinal energy spread is neglected. An initial “pseudo-equilibrium”
distribution matched to the periodic focusing channel was formed by canonically
transforming a root-mean-squared (rms) equivalent thermal equilibrium distri-
bution constructed under the smooth approximation [22]. This initial distribu-
tion reflects self-consistent Debye screening due to space charge in the beam core
and avoids potentially spurious instabilities associated with initial Kapchinsky-
Vladimirsky (KV) distributions in periodic focusing channels when space charge
is strong [23]. 400 advance steps per doublet period were employed to resolve
higher harmonic variations of the applied focusing force with the quadrupole
bias potential applied consistently with the relevant harmonics in eq. (2) to the
actual electrode arrangement used in the experiment as described in ref. [24].
Approximately 700 grid cells are employed across the rms equivalent beam to
resolve space-charge variations and applied field nonlinearities. Simulations use
105 particles for good statistics with ∼150 particles per grid cell and ∼ 2× 104

particles in a circle formed from the thermal Debye length (rms equivalent beam
measures). In the Warp simulations we employ rms emittance growth (x- and
y-plane averaged measure) relative to the initial value over an evolution of 100
periods to identify bands of instability. Over this simulation length there are
generally no particle losses. For the case of strong instability, longer evolutions
may result in significant particle losses. For weaker instability, losses may be
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modest or negligible before the instability nonlinearly saturates. In the experi-
ment we expect losses to be enhanced in the case of instability due to a cascade
of processes involving effects such as misalignments, noise, and scattering.

Let us start from the symmetric FODO case where ζ = 1. Figure 2 shows
the resonance instability bands identified by Warp simulations. Three different
linear focusing functions illustrated in the upper panel have been taken for ex-
ample. The tune depression is defined by η = 1−∆ν/ν0 where ν0 is the bare tune
per single focusing period and ∆ν is the rms tune shift caused by the Coulomb
repulsion. For an equilibrium plasma with the rms emittance εrms, the space-
charge-depressed tune can be evaluated from ν ≡ ν0 − ∆ν =

∮
(εrms/2πr

2
⊥)dτ

where r⊥ denotes the transverse rms extent of the plasma. The ordinate of
Fig. 2 is the plane-averaged emittance growth after the plasma is stored in the
Paul trap for 100 focusing periods at a fixed tune. Obviously, emittance growth
obtained which corresponds to the location of instability is very insensitive to
the form of the focusing insofar as equivalent values of focusing strength mea-
sured by ν0 are employed. We recognize three clear peaks of emittance growth
near ν0 ≈ 1/6, 1/4, and 1/3 which is consistent to previous numerical and exper-
imental results [12, 25]. According to the Vlasov theory in ref. [26], the major
peak of emittance growth near ν0 ≈ 1/4 is generated mainly by the instability of
the linear collective mode, while the other two near ν0 ≈ 1/6 and 1/3 are due to
third-order nonlinear resonances. These stop bands are significantly enhanced
when the external driving field contains nonlinear force terms [25].

We now change both the filling factor and drift ratio to ξ = 0.25 and ζ = 0.1,
keeping the other numerical conditions identical. The upper panel in Fig. 3
shows the focusing waveforms corresponding to these parameters. The blue
curve consists of the Fourier components with the harmonic number n = 1, 2, 3,
and 4; unlike the previous example in Fig. 2, the even harmonics are allowed.
Corresponding Warp simulation results are given in the lower panel. Although
the three curves do not perfectly overlap, we still observe the three significant
instability bands rising near ν0 ≈ 1/6, 1/4, and 1/3 in all cases. For more
information, the stop band distribution under the single sinusoidal focusing is
compared with those under the ideal doublet waveforms that have different
filling factors and drift ratios. Figure 4 suggest that the emittance growth is
not substantially affected by the changes in ξ and ζ. According to a number
of systematic Warp simulations executed under various conditions, the simple
sinusoidal-focusing model can well reflects the resonance nature of an arbitrary
doublet focusing.

4. Results from S-POD experiments

Non-neutral plasmas can readily be produced by ionizing neutral gas atoms
with a low-energy electron beam from an electron gun. We have often chosen
Ar for S-POD experiments. It is possible to change the initial plasma density to
some degree by controlling the gas pressure and electron beam current. An rms
tune depression of η ≈ 0.8 can be reached with the present S-POD apparatus. In
the following experimental data, Ar+ ions are confined in the Paul trap typically
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for 10 msec which corresponds to a beam propagation length of 10,000 doublet
cells. Ions surviving after the 10-msec storage are then dumped from the trap
and measured in a Faraday cup. More details of the plasma formation process
and plasma measurement can be found in refs [11] and [24]. The computer
control system for S-POD automatically repeats this measurement cycle, slightly
shifting the operating tune (in other words, the amplitudes of the sinusoidal
focusing fields) every machine cycle. A single cycle (including data transfer to a
PC) is completed within 10 seconds. Since the fundamental harmonic oscillates
at 1 MHz, the frequency of the nth harmonic superimposed on it is n MHz.

4.1. Symmetric focusing

In the usual operating mode of a linear Paul trap, the time variations of
the horizontal (x) and vertical (y) plasma confinement potentials are com-
pletely symmetric. The two transverse tunes (ν0x, ν0y) are then equal, i.e.,
ν0x = ν0y(= ν0), as assumed in the last section. Figure 5 shows the stop-band
distribution measured with S-POD under the symmetric focusing condition. In
order to experimentally verify the Warp prediction in Fig. 2, we have taken the
first four odd harmonics into consideration. The amplitudes of these higher-
frequency harmonics are, however, fixed at 5 % of the amplitude of the primary
focusing harmonic (n = 1) because of a technical limitation [19]. The black line
corresponds to the case where the three perturbation harmonics with n = 3, 5,
and 7 are simultaneously applied to the quadrupole rods in addition to the fun-
damental n = 1 harmonic. These perturbation waves oscillate at 3, 5, and 7
MHz. The ordinate indicates the number of Ar+ ions detected by the Faraday
cup after a storage period of 10 msec. The initial ion number Nin is set at either
106 or 107 to check density-dependent effects. We confirm the existence of three
bands of particle loss near ν0 ≈ 1/6, 1/4, and 1/3, which agrees with the Warp
results in Fig. 2 [27]. When Nin is increased, all these stop bands shift toward
the higher tune side due to the stronger Coulomb repulsion that depresses the
effective tune. The estimated tune depression at Nin ≈ 107 is about 0.8 [11].
For comparison, the stop-band distribution when all three higher harmonics are
switched off is plotted in red, but no significant change in particles stored is
observed. Results of another experiment are given in Fig. 6. The plasma is now
focused by the first four Fourier harmonics with n = 1, 2, 3, and 4 (instead of
n = 1, 3, 5, and 7 in Fig. 5). We again observe no substantial difference from
the stop-band distribution in the single harmonic focusing (red curve), as antic-
ipated from extrapolations of emittance growth bands in the Warp simulations.
We also tried other simpler cases in which only a single high-frequency harmonic
is superimposed with the fundamental focusing wave of n = 1, but the results
remained unchanged.

4.2. Asymmetric focusing

It is technically easy to obtain different horizontal and vertical bare tunes in
the S-POD apparatus by applying static bias voltages of quadrupole symmetry
to the four electrodes. For instance, if the two horizontal electrodes are biased
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with a certain positive DC voltage VDC, then the horizontal tune ν0x for pos-
itively charged ions becomes larger than the vertical tune ν0y. The difference
δν(≡ ν0x − ν0y) between the two tunes depends on VDC and the amplitudes
of the focusing harmonics. Particle-loss distributions near the quarter integer,
obtained under the asymmetric focusing conditions, are shown in Fig. 7. We
here activate no higher-frequency harmonics, recalling that the single sinusoidal
focusing can well approximate general doublet focusing. It is evident that the
asymmetric focusing gives rise to instability band splitting. This observation is
quite reasonable because ν0x and ν0y now approach a certain rational number
at different rf amplitudes. In Fig. 7, δν is adjusted to various different values by
choosing proper VDC and rf amplitude. The stop band staying at ν0x ≈ 0.265 in
all cases is attributed to the horizontal resonance. The vertical stop band of the
corresponding order moves as the abscissa is ν0x (not ν0y ) in this plot. We rec-
ognize that the size of the stop-band shift agrees with δν. When δν = 0, the two
stop bands merge together leading to enhanced ion losses. It has been confirmed
through Warp simulations that simulated emittance growth near ν0 ≈ 1/6 and
1/3 also shows corresponding behavior to the experimental loss curves when δν
is finite.

Varying the bias VDC and the amplitude of the sinusoidal focusing wave
over a wide range, we can clarify possible beam instability regions in the tune
space. Such a tune diagram is constructed in Fig. 8 at Nin ≈ 106 (black) and
Nin ≈ 107 (red). We again pay attention to the tune domain where the strong
linear collective resonance should take place. The full width at half maximum
(FWHM) of the band of particle loss is roughly evaluated from the S-POD data
at each operating point and expressed with a bar in the picture. A dot in the
bar indicates the location at which ion losses are maximum. We clearly see two
instability bands crossing near the point where ν0x = ν0y = 1/4. These stop
bands are always located slightly above the quarter integer, i.e., in the region
ν0x(0y) ≥ 1/4 because of the space-charge-induced tune shift. Since the tune
of the linear collective mode is more depressed at higher ion density, the shift
becomes larger as we increase Nin. The stop bands are considerably widened
for Nin ≈ 107 analogously to the case demonstrated in Figs. 5 and 6. We also
notice that at high density, the point of maximum ion losses always deviates
from the stop-band center to the low tune side. This is because the operating
point stays longer within the stop band when it is near the low-tune edge at
the beginning. Once the resonant instability is activated, the plasma emittance
grows resulting in a density reduction or even ion losses. The whole stop band
then moves toward the lower tune side. Therefore, the ion-loss rate within a
particular stop band is more enhanced for the operating point that has a smaller
bare tune.

5. Summary

We have studied the resonance nature of an intense charged-particle beam
propagating through periodic quadrupole doublet focusing channels. Unlike con-
ventional approaches where it is generally difficult to reconfigure beam transport
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lattices of limited length, we here made use of the novel tabletop tool “S-POD”
that enables systematic experimental simulations of beam propagation under a
diverse range of external periodic focusing potentials. A large number of heavy
ions were stored in a compact linear Paul trap for a certain period to reproduce
the collective beam behavior over thousands of doublet focusing periods. When
the horizontal and vertical net focusing effects were equal (ν0x = ν0y), three
noticeable stop bands appeared near the bare tunes ν0 ≈ 1/6, 1/4, and 1/3 [25].
According to the coherent resonance theory in ref. [26], the relatively large stop
band slightly above ν0 ≈ 1/4 is due mainly to the instability of the quadrupole
mode while the sextupole resonance should be responsible for the other two.
Despite the fact that nonlinear driving forces are probably enhanced by finite
electrode misalignments, we found no other sharp instability bands originating
from higher-order resonances in either the simulations (via location of emittance
growth) or in the laboratory experiment (via measured particle losses). The ob-
served instability distribution was not essentially influenced by the choice of
higher-frequency Fourier harmonics in the plasma confinement field but slightly
shifted depending on the plasma intensity. These experimental observations
agree fairly well with two-dimensional Warp simulations. We can conclude that
the ideal doublet focusing is dynamically similar to the simple sinusoidal focus-
ing, regardless of the filling factor ξ and drift ratio ζ. At least, the locations of
major stop bands are quite insensitive to the details of the doublet structure.
We also confirmed that each of the three stop bands splits into two parts when
the transverse tunes are different (ν0x ̸= ν0y). This is not surprising because a
resonance occurs under the condition that either ν0x or ν0y is close to a certain
rational number. One of the two parts should thus be caused by a horizontal
resonance and the other by a vertical resonance of the same order.
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Figure 1: Doublet waveform for transverse beam focusing. (a) Ideal focusing function K(τ)
for a period L. The amplitudes of the two (focusing and defocusing) pulses are equal. (b)
The corresponding measured rf voltage generated by the S-POD rf power supply system. The
frequency is set at 1 MHz and the full width of the picture is 1 µs.
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Figure 2: Warp simulation results corresponding to three different waveforms for K(τ). The
three curves in the upper picture illustrate the linear focusing function considered in this
example: the ideal piecewise constant doublet with ξ = 0.5 and ζ = 1 (black), a single
sinusoidal harmonic (red), and an approximate doublet (blue) composed from the first four
Fourier components (n = 1, 3, 5, 7). Note that only odd harmonics appear in the symmetric
case with ζ = 1. Root-mean-squared emittance growth obtained after 100 focusing periods
with these focusing waveforms are plotted in the lower panel as a function of the bare tune
ν0. A thermal equilibrium distribution with the rms tune depression of 0.9 has been assumed
initially. The three Warp results almost completely overlap with each other.

Figure 3: Warp simulation results corresponding to three different waveforms for K(τ). The
simulation parameters here are the same as those in Fig. 2, except the filling factor and drift
ratio are changed to ξ = 0.25 and ζ = 0.1. The blue focusing curve is composed from the four
harmonics with n = 1, 2, 3, and 4.
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Figure 4: Warp simulation results obtained with the ideal doublet focusing with various
values of ξ and ζ as indicated. (a) ξ-dependence of emittance growth bands when ζ = 1.
(b) ζ-dependence of emittance growth bands when ξ = 0.25. The band distribution for the
single-harmonic sinusoidal focusing is plotted with a black solid curve for comparison in both
panels.
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Figure 5: Particle-loss distribution measured in S-POD. Similarly to the numerical example in
Fig. 2, three weak harmonics with n = 3, 5, and 7 are superimposed on the primary focusing
harmonic (n = 1). The amplitudes of the perturbation harmonics are fixed at 5% of the first
n = 1 harmonic amplitude. The ordinate of the picture represents the number of Ar+ ions
surviving after a 10-msec storage (104 periods) at a fixed tune in the Paul trap. The initial
number of Ar+ ions is set at Nin ≈ 106 (lower curve) or 107 (upper curve). For reference,
the particle-loss distributions obtained without the perturbation harmonics are plotted in
red. The arrows indicate locations of the three loss bands induced mainly by the second and
third-order resonances.
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Figure 6: Particle-loss distribution measured in S-POD. Similarly to the numerical example in
Fig. 3, three weak harmonics with n = 2, 3, and 4 are superimposed on the primary focusing
harmonic (n = 1). Other conditions are identical to those in Fig. 5. Black and red curves
show the particle-loss distributions with and without the perturbation harmonics.

Figure 7: Linear-instability-induced particle loss bands measured under asymmetric focusing
conditions. The number of Ar+ ions surviving after a 10-msec storage in the Paul trap is
plotted as a function of the horizontal bare tune ν0x. The higher-frequency harmonics have
been switched off in this experiment; the plasma is focused by the single sinusoidal field
oscillating at 1 MHz. Nin is set at 106. The imbalance between the transverse bare tunes
(ν0x, ν0y) is introduced by biasing the quadrupole rods with DC voltages. Seven different
cases of tune separation are shown with values as indicated in the color coded key.
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Figure 8: Tune diagram of particle loss bands in the vicinity of a quarter integer for two
plasma intensities. The location of the linear resonance stop band obtained through ion-loss
measurements in S-POD is plotted on the tune space. Horizontal or vertical bars represent
the approximate FWHM of the loss band estimated from the measurement data. A dot on
each bar shows where maximum ion losses occur within the band. Two different initial ion
numbers are considered, Nin ≈ 106 (black) and 107 (red). The plasma confinement time is
set at 10 msec in all measurements.
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